

Problem Based Learning: Teaching engineers to tackle the SDGs

Edward Cook University of Leeds Dr Costas Velis

University of Leeds

Moderated by:

Aisling Ni Chonaire

Behavioural Insights

Educating for the end-of-engineered life: waste, risk and circular economy

Problem Based Learning - Teaching Engineers to tackle the SDGs Royal Academy of Engineering – 4 March 2020

Plastics pollution and circular economy research group

Plastic pollution and circular economy research group

Waste flows modelled on land, before they reach the aquatic environment

Plastic pollution and circular economy research group

Systems approach to after-use materials

State of global waste and resources management

'Leakage': open dumping, burning, marine litter and plastics pollution

Source: C Velis

SDGs and waste management

UN Environment: 2-3 billion people without basic waste services

How SDGs relate to waste management?

Global Waste Management Outlook Goals 2020

How SDGs relate to waste management?

Global Waste Management Outlook Goals 2030

SDG 12 targets and indicators

Target 12.3

12.3.1 (a) Food loss index

12.3: Halve per capita food waste and reduce food loss

> 12.3.1 (b) food waste index

By 2030, halve per capita global food waste at the retail and consumer levels reduce food losses along production and supply chains, including post-harvest losses

Target 12.4

UNIVERSITY OF LEEDS

12.4: Environmentally sound management of hazardous waste

12.4.1: Number of parties to international multilateral environmental agreements on hazardous waste, and other chemicals that meet their commitments and obligations in transmitting information as required by each relevant agreement

12.4.2: Hazardous waste generated per capita and proportion of hazardous waste treated, by type of treatment

By 2020, achieve the environmentally sound management of chemicals and all wastes throughout their life cycle, in accordance with agreed international frameworks, and significantly reduce their release to air, water and soil in order to minimize their adverse impacts on human health and the environment

Target 12.5

12.5: By 2030, substantially reduce waste generation through prevention, reduction, recycling and reuse

12.5.1: National recycling rate, tonnes of material recycled (no data available)

By 2030, substantially reduce waste generation through prevention, reduction, recycling and reuse

Recycling rate and systems

Recycling rates around the World

Source: Velis et al., in preparation

What is the Informal Recycling Sector?

Around the world, millions of people make a living though recovering and selling recyclable materials from waste. Whilst these activities are predominantly found in low and middle income countries, the informal recycling sector (IRS) also has a notable presence in high income countries. Over the last few decades,

https://soco.leeds.ac.uk/

SoCo tool: Solidary selective collection

SoCo project: Cooperative in Brazil – Effective plastics sorting

Waste picking challenges

Supporting inclusion/ formalisation IRS for plastics pollution prevention

– Source: CSIRO and UoL under preparation

Recycling and pollution?

ISWA TASK FORCE on Globalisation and Waste Management PUBLICATIONS

Global recycling systems rely on exports

Uncontrolled residues management for plastics in China

Global review on the safer end of engineered life

The global review on Safer End of Engineered Life

The global review on Safer End of Engineered Life

Example of potential hazards and pathways toward sensitive receptors for plastics

Engineering solutions: YES!

But need maths and quantification put in socioeconomic context

Inter- and cross-disciplinarity

Integrated sustainable waste management framework

Modelling plastic pollution complexity

Human - engineering – environment complex systems

UNIVERSITY OF LEEDS

Effect of improving collection infrastructure / service

Solid waste management laboratory: sample preparation

State-of-the-art laboratory facilities for waste characterisation

Scope: Major solid waste and recourse recovery challenges

Approach: With multiple tools – core in environmental engineering – supported by cross-disciplinary collaborations

Dr Costas Velis c.velis@leeds.ac.uk

Ed Cook e.r.cook@leeds.ac.uk