

Problem Based Learning: Teaching engineers to tackle the SDGs

IRSHAAD VAWDA

CEO, Engineers Without Borders South Africa

Developing the skills & knowledge for designing solutions to poverty

Contents

- No Poverty and Engineering Education
- Who is EWB-SA?
- What is the "Engineering for People Design Challenge"?
- What is "Design a Difference"?
- Practical Exercise based on the Design Challenge

No Poverty & Engineering Education

FROM
GENEROSITY
TO
JUSTICE
A NEW GOSPEL
OF WEALTH

DARREN WALKER

I see it like this: If bringing canned goods to a food bank to help feed people in the community is a kind of charity—and if advocating for food stamps, free school lunches, and a living wage reflects a deeper kind of social obligation—then dismantling the systems of poverty and oppression that prevent people from being able to afford healthy food in the first place is delivering justice.

II. - MECHANICAL ENGINEERING.

FIRST YEAR. SEE PAGE 31.

	SECOND	YEAR.
FIRST TERM.		SECOND TERM.
Carpentry and Wood-turning Differential Calculus . Physics: Mechanics, Wave tion, Electricity (lectures) Descriptive Geometry . German (or French) . English Literature .		Mechanism: Gear-Teeth: Machine Tools; Cotton Machinery Drawing. Pattern Work 14 Foundry (elective) 14 Integral Calculus 36 German (or French) 200 (190) English Literature and Composition 16

FIRST	TERM.				SECOND TERM.
* Physical Laboratory * General Statics	asurer ential	nen E	qua	. 525 . 526 . 379 . 380 . 142 . 46 . 370 . 373 . 71 (191)	Steam Engineering: Boilers Drawing, Design, and use of Surveying Instruments 526, 451 Engineering Laboratory Forging: Chipping and Filling 142, 144 Physical Laboratory Strength of Materials; Kinematics and Dynamics Terman (or French) Political Economy and Industrial History Lass Law 275

FOURTH YEAR

	20011	A IEAR.			
	FIRST TERM.	SECOND TERM.			
*	Steam Engineering \$44	Engineering Laboratory 545 Machine-Tool Work 146 Strength and Stability of Structures; Theory of Elasticity 88 Foundations 555 Industrial Management 555 Thesis.			
	1. Marine Engineering 53 2. Locomotive Construction 53 3. Mill Engineering 53 4. Heating and Ventilation 53 Dynamo-electric Machinery 40 Hygiene of Ventilation 743	1. Marine Engineering 551 2. Locomotive Construction 550			

						Heating and Ventila			
-	ı N	ot	takes	by	Option 4.	-			

. . . 552

Requirements 1975

	Departmental Program ²				
	Required Subjects				135
2.01	Mechanics of Solids	4	0	8	
2.02	Introduction to System Dynamics	4	0	8	
2.03J	Dynamics	4	0	8	
2.20	Fluid Mechanics	4	0	8	
2.30	Mechanical Behavior of Solids	3	2	7	
2.40	Thermodynamics	4	0	8	
2.671	Measurement and Instrumentation	2	3	4	
2.672	Project Laboratory	1	3	2	
2.70	Introduction to Design	2	3	4	
2.73	Design Projects	2	3	4	
2.86	Manufacturing Processes Laboratory	3	3	3	
18.03	Differential Equations	4	0	8	
	Thesis ¹		9		

https://www.youtube.com/watch?v= CNLBbtP mBc&t=368s

The second anticipated trend is a move towards socially-relevant and outward-facing engineering curricula. Such curricula emphasize student choice, multidisciplinary learning and societal impact, coupled with a breadth of student experience outside the classroom, outside traditional engineering disciplines and across the world.

Graham, Ruth. 2018. 'Global State of the Art in Engineering Education - MIT School of Engineering', March, 170.

Who is EWB-SA?

Empowering Engineers to Empower People

What is the "Engineering for People Design Challenge"?

DESIGN BRIEF 2019/20

MAKERS VALLEY SOUTH AFRICA

Produced by a partnership of Engineers Without Borders South Africa, UK and USA

What is "Design a Difference"?

This programme aims to 1) bring the skills of experienced engineers to the benefit of under-served communities, 2) develop "socio-technical systems design" capacity among engineers, and 3) train engineers to take this skill back into their everyday work

Practical Exercise

Thank you!

irshaad.vawda@ewbsa.org

www.ewbsa.org

