

EU-US Frontiers of Engineering Symposium

Steel, a sustainable material

JS Thomas, ArcelorMittal Global R&D

Context and challenges of Sustainable Development

- > Steel, a sustainable material?
- How to capture sustainability? Methodology issues
- > The Sovamat Initiative: toward a sustainability metrics

Sustainable Development: Context and Challenge

- 1. Measure!!
- 2. Pro-actively anticipate and adapt offer and performance to legislation evolution and customers needs

Context and challenges of Sustainable Development

> Steel, a sustainable material?

How to capture sustainability? Methodology issues

> The Sovamat Initiative: toward a sustainability metrics

Steel production

- Two main routes for one product: steel
 - BF/BOF route (mainly primary)
 - EAF route (mainly secondary)

Demand steel vs. scrap offer

Increase of steel demand
Lack of available scrap
Percentage of primary production still high

Steel cycles

Recycled content (RC)-

•Steel Overall Recycling Rate ~ 90%

Sector	Market size	Overall RR
Packaging	5.5%	66%
Automotive	30.2%	99%
Domestic Appliances	5.0%	93%
Construction	43.6%	85%
Machinery	15.7%	91%

End of life Recycling Rate (RR)

Steel Overall Recycling Rates based upon North American data (<u>Steel Recycling Institute 2005</u>)

n number of cycle

$$Tcum = Tini \times \frac{(1 - R^{n+1})}{1 - R}$$

Steel recycling benefits

n infinite

For a 90% recycling rate: 1 ton of primary steel = 10 tons of steel used!

Sustainable stock of iron for future generations

Steel is constantly reinventing itself ...

Colonnes S355 Colonnes S460 Weight savings:

ArcelorMittal

77 Hudson at Colgate Center, Jersey City

Ultra Low CO2- steelmaking

ULCOS is the most ambitious program in the steel industry level worldwide to face the climate change issue at a radical

•**Objective**: develop breakthrough steel production routes to reduce specific CO2 emissions by a factor 2 (or more)

•Launched in 2002 •75 M€ spent to date

ULCOS: Ultra Low CO₂- steelmaking

• After screening: 4 routes selected for further development

Coal & sustain	able biomass	Natural gas	Electricity
Revamping BF	Brownfield	Revamping DR	Greenfield
TGR-BF	HIsarna	ULCORED	ULCOWIN
			ULCOLYSIS
Pilot tests (1.5 t/h)	lot tests (1.5 t/h) Pilot plant (8 t/h)		Laboratory
Demo phase	start-up 2010	to be erected in	
under preparation		2010 :	

Social and economical benefits Example of a steel bridge

- Aestetic: Light structures
 - Less materials, reduced foundations → reduced cost
- Perennity of the material
 - Resist to earthquakes → safety
 - Reduce maintenance, visible pathology, forecast inspections → reduced cost, safety
- Dry workplace, reduced nuisance
 - Impact reduction for neighbourhood → social benefit
 - Prefabrication in optimised places, reduced welding → safety, reduced cost
- Reduced logistic and delays
 - Millau: 8000 less trucks compared to a concrete bridge → safety, social benefit
 - Early brought into service → increased pay-back, social benefits
 - Reduction of accidents → safety
- High lifespan
 - Iron Bridge (Birmingham) : dated 1779; Millau: 120 years

Context and challenges of Sustainable Development

> Steel, a sustainable material?

How to capture sustainability? Methodology issues

The Sovamat Initiative: toward a sustainability metrics

Life Cycle Analysis: a key tool for sustainable decision making ... Principle

Why is it important?

- Choices of consumers or decision-makers will be driven by the environmental performance of products and solutions
 - Environmental labeling of products

esources

- Environmental product declaration in construction sector
- LCA is a reference methodology to assess this performance

Case study: LCA of a two-span bridge description

Functional unit: Two-span road bridge with spans of 2 x 29,27m. Composite bridge with partially pre-fabricated bridge girders and reinforced concrete cross girders.

Case study: LCA of a two-span bridge steel production and end-of-life

Case study: LCA of a two-span bridge life cycle results

Climate change impact of the composite bridge

- Materials production is the largest contributor to climate change
- The environmental benefit brought by steel recycling
 - emissions reduces by 21% (88to CO2-eq)
 - savings equivalent to ~ 700 000km driven by regular car!

Limits of LCA as a 'sustainability tool'

- Do not valorize positive impacts (social and environmental)
- Difficulty to address technical issues like allocation for recycling in particular
- Social impacts: still a partial approach
- LCA = static approach, How to take time into account?
- Global impacts OK, Local impacts No
- LCA = micro-economic evaluation, what about upscaling?

LCA can't manage and solve complexity of sustainable decision alone!

Context and challenges of Sustainable Development

- > Steel, a sustainable material?
- How to capture sustainability? Methodology issues

> The Sovamat Initiative: toward a sustainability metrics

The Sovamat initiative

- The SOVAMAT initiative aims at:
 - Develop the methodology tools to evaluate the economic, environmental and social impacts and benefits of our process/products/services
 - Integrate this new sustainability metrics in our developments/process/decisions to address the challenges of tomorrow's society (climate change, biodiversity, water stress, demography, energy and material needs, ...)
- A network of more than **100 partners** has been developed in all disciplines.
- A web site has been built to reinforce the networking, to be recognised, to promote the Sovamat Initiative ideas, and to host projects we are involved in. <u>www.sovamat.org</u>

Toward a new metrics: axes of research

The Society And Materials seminars

PACT Project: Pathways for carbon transition

- A collaborative project in the 7th Research EU FP
- Project objectives
 - To shape what a sustainable post-carbon society would look like
 - How we could reach it within the next 50 years
 - Focus first on what shapes the energy demand and evolution, from two viewpoints:
 - infrastructures, (urbanisation and land-use schemes),
 - life-styles and behaviours, in relation to the technologies that should be available
 - Objective for us : to crosslink scenarios at 2050 horizon with demand for structuring materials – metals, cement at least
 - Next deadline: draft report by the end of this year

PACT Project: some results and perspectives

				ArcelorMitt	
		today		2050	
		GJA		GJA	
steel					
Integrated		17	BP	10,3	BT R8D
Electric Arc Furnace		3,5	BP	15,3	BTR8D
Steel Sector		13	BP	3,15	BTRSD
primary electrolysis	SA	100	RM, IP & ES	70	improved electrolysis technology (drained cathodes and inert anodes)
primary carbothermic			BT	54	future development, not a commitment of the sector
se con dar y	SA	3-9	none	5,5	
aluminum sector	JPB	71,7	JPB	50,7	
cement	SA	4,25	IP	3	assuming progress in cement production and no change of formula
wood	SA	4-6	?		
glass	SA	7	RM, IP & ES	4,5	
plastics					
LDPE	BP	8,5	BP	6,0	
HDPE	BP	5,4	BP	3,1	
Polypropylen	BP	3,6	BP	2,3	
PVC	BP	3.8	BP	3.4	

SA Sector Average, BAT Best Available Technology, BP Best Practice, JPB my estimate, BT R&D Breakthrough R&D, BT D Breakthrough demonstrator (present stage of ULCOS), ES Expert Suggestion (like IEA), RM Roadmap, NT Normative Target, IP Incremental Progress

Conclusions and Perspectives

- Steel is a sustainable material, with high social value
- Steel is constantly reinventing itself to be part of the solution, not part of the problem
- Environment is not the only stake
 - Social benefits, economical stakes have to be part of the process of sustainable development
- Current methods are limited and not perfect, they have to evolve
 - Necessary to question the current methods
 - The world is complex, so are decisions
 - Necessity to develop new metrics for sustainability assessment

"The world cannot succeed without business as a committed solution provider to sustainable societies and ecosystems"

WBCSD President Bjorn Stigson