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Era of massive data sets

@ engineering science in 21st century:

» rapid technological advances (sensors, storage, computing etc.)
» tremendous amounts of data being collected
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@ a wealth of data.....yet a paucity of information

@ possible structure in high-dimensional data sets

» sparsity (data summarized by small number of coefficients)
» manifolds (data lies on/near curved surfaces)
» networks (data naturally associated with a graph)
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Optical digit/character recognition

@ Goal: correctly label digits/characters based on “noisy” versions

@ E.g., mail sorting; document scanning; handwriting recognition systems



Optical digit/character recognition

@ Goal: correctly label digits/characters based on “noisy” versions

@ strong sequential dependencies captured by hidden Markov model

@ “message-passing” spreads information along chain
(Baum & Petrie, 1966; Viterbi, 1967, and many others)



Digital image processing

@ 8-bit digital image: matrix of intensity values {0,1,...255}
@ enormous redundancy in “typical” images (useful for denoising,
compression, etc.)
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Digital image processing

@ 8-bit digital image: matrix of intensity values {0,1,...255}
@ enormous redundancy in “typical” images (useful for denoising,
compression, etc.)

@ simplest graphical model: 2-dimensional grid or lattice
(Ising, 1923; Geman & Geman, 1984, and many others)
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Communication and error-control coding

@ error-control coding: introduce redundancy via parity checks

1 ifx1®ax3®rs Pz =0,
0 otherwise.

Y13s7(21, T3, T5,T7) = {



Communication and error-control coding

@ error-control coding: introduce redundancy via parity checks

@ state-of-the-art codes (turbo, LDPC etc.) based on “tree-like” graphs
(Gallager, 1963; Berrou et al., 1993; Urbanke & Richardson, 2008, and many others)



Epidemiological networks

(a) Cholera epidemic (London, 1854)
Snow, 1855

@ network structure associated with spread of disease




Epidemiological networks

(a) Cholera epidemic (London, 1854) (b) “Spoke-hub” network
Snow, 1855

@ network structure associated with spread of disease

@ useful diagnostic information: contaminated water from Broad Street
pump
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Social networks
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Biological networks
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@ gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)
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Biological networks
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@ gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)

@ many other examples:
» protein networks
» phylogenetic trees
» neural networks for brain-machine interfaces (e.g., Carmena et al., 2009)
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Core challenges

@ Exploiting graphical structure

» Computing most probable configurations

* Communication: channel decoding (turbo, LDPC)
* Image processing: denoising/deblurring

» Inferring “hidden variables”

* Computer vision: stereo vision, face recognition
* Social networks: detecting cliques, party membership etc.
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Core challenges

@ Exploiting graphical structure

» Computing most probable configurations

* Communication: channel decoding (turbo, LDPC)
* Image processing: denoising/deblurring

» Inferring “hidden variables”

* Computer vision: stereo vision, face recognition
* Social networks: detecting cliques, party membership etc.

© Discovering graphical structure in data

» Appropriate choice of “state variables”

* Neuroscience: firing rates, spike counts, EEG?
* Optical character recognition: pixels, Fourier, wavelets?

» Learning graph structure from data

* Graph selection: which edges are present/absent?
* Parameters: what types of interactions?
* Validation: reliability of fitted models?
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Example: Epidemics and graphical models

+1 if individual s is infected

Disease status of person s: Ts = L .
—1 if individual s is healthy



Example: Epidemics and graphical models

. +1 if individual s is infected
Disease status of person s: Ts = . .
—1 if individual s is healthy
(1) Independent infection O
5 O

P(x1,...,25) x H exp(fsxs)

s=1



Example: Epidemics and graphical models

. +1 if individual s is infected
Disease status of person s: Ty = L .
—1 if individual s is healthy
(1) Independent infection O
5 O
P(zy,...,z5) x exp(fsxy
(21 5) 1;[1 (Oszs) S

(2) Cycle-based infection

5
P(xy,...,25) x H exp(fsxs) H exp(fstxs xt)
s=1 (s,t)eC



Example: Epidemics and graphical models

. +1 if individual s is infected
Disease status of person s: T = . .
—1 if individual s is healthy
(1) Independent infection O
5 O
P(zy,...,z5) x exp(fsxy
( ) [Lewpltua) .

(2) Cycle-based infection

5
P(xy,...,25) x H exp(fsxs) H exp(fstxs xt)
s=1 (s,t)eC
(3) Full clique infection

5
]P(l'lv s £U5) X H exp(gsxs) H exp(astxsxt)
s=1 s#t



Possible epidemic patterns




Underlying graphs




Markov property and neighborhood structure

@ Markov properties encode neighborhood structure:

d
(Xs | XV\s) = (Xs | XN(S))
—_— —
Condition on full graph Condition on Markov blanket

N(s) = {t1,t2,t3,ts,t5}

@ basis of pseudolikelihood method (Besag, 1974)
@ used for Gaussian model selection (Meinshausen & Buhlmann, 2006)



Graph selection via neighborhood regression

Key: Graph recovery G equivalent to recovering neighborhood sets N(s).

Method: Based on n samples:
@ For each node s, predict X, based on other variables X\ ,:

~ 1 & )
8 — . _1 .y (9 " .
[s] arg min, - ZlogP(@,X\s ) + A Z |0t
=1 \— e’ teV\{s}
—_——
negative log likelihood {1 regularization

© Estimate local neighborhood N (s) by extracting non-zero positions within é\[s]

© Combine the neighborhood estimates to form a graph estimate G.
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Prob. success

Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled

Star graph; Linear fraction neighbors
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Some theory: Scaling law for graph selection

@ graphs G ¢ with p nodes and maximum degree d
@ minimum absolute weight 0min on edges

@ how many samples n needed to recover the unknown graph?

Theorem
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Some theory: Scaling law for graph selection

@ graphs G ¢ with p nodes and maximum degree d
@ minimum absolute weight 0min on edges

@ how many samples n needed to recover the unknown graph?

Theorem

Achievable result: For graph estimate G produced by NR method:

n>c, (d*+1/62;,) logp = P[G £ G] — 0
—_———
Lower bound on sample size Vanishing probability of error

Necessary condition: For graph estimate G produced by any algorithm.

n<c(d?+1/62,)logp = P[G # G] > 1/2
N————

Upper bound on sample size Constant probability of error




lllustration: Social network of US senators
@ originally studied by Bannerjee, Aspremont and El Ghaoui (2008)

@ discrete data set of voting records for p = 100 senators:

X +1 if senator i voted yes on bill j
7 1=1 otherwise.

o full data matrix X € R™"*P with n = 542:

X1 X2 0 X
Xo1 Xog -+ Xop
¥ = |X31 X322 -0 X3

an Xn2 T an



Estimated senator network (subgraph of 55)
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Summary

@ graphical models: one framework for capturing structure in
high-dimensional data sets
» classical history....
» increasingly relevant in era of massive data sets
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Summary

@ graphical models: one framework for capturing structure in
high-dimensional data sets

» classical history....
» increasingly relevant in era of massive data sets

@ various areas to be further explored:

» other priors over graph spaces

dynamic graph models

mixed modality graphs (e.g., switching Markov models)
inferring causality

theory for message-passing on “non-tree-like” graphs

vy vy vy
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Summary

@ graphical models: one framework for capturing structure in
high-dimensional data sets
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» increasingly relevant in era of massive data sets

@ various areas to be further explored:

» other priors over graph spaces

dynamic graph models

mixed modality graphs (e.g., switching Markov models)
inferring causality

theory for message-passing on “non-tree-like” graphs

vy vy vy

@ interactions between graphs and other signal structures

» graphs and sparse signals: e.g., Cevher, Hegde, Duarte & Baraniuk, 2009
» graphs and manifolds: e.g., Belkin et al., 2009
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