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Era of massive data sets

engineering science in 21st century:
◮ rapid technological advances (sensors, storage, computing etc.)
◮ tremendous amounts of data being collected
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◮ rapid technological advances (sensors, storage, computing etc.)
◮ tremendous amounts of data being collected

many examples:
◮ biological data: genomics, proteomics, neural recordings etc.
◮ astronomy: Sloan digital sky survey, Large synoptic survey telescope etc.
◮ consumer preference data: Netflix, Amazon, etc.
◮ geosciences: hyperspectral imaging
◮ financial data: stocks, bonds, currencies, derivatives etc.

a wealth of data.....yet a paucity of information

possible structure in high-dimensional data sets

◮ sparsity (data summarized by small number of coefficients)
◮ manifolds (data lies on/near curved surfaces)
◮ networks (data naturally associated with a graph)
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Optical digit/character recognition

Goal: correctly label digits/characters based on “noisy” versions

E.g., mail sorting; document scanning; handwriting recognition systems



Optical digit/character recognition

Goal: correctly label digits/characters based on “noisy” versions

strong sequential dependencies captured by hidden Markov model

“message-passing” spreads information along chain
(Baum & Petrie, 1966; Viterbi, 1967, and many others)



Digital image processing

8-bit digital image: matrix of intensity values {0, 1, . . . 255}

enormous redundancy in “typical” images (useful for denoising,
compression, etc.)
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Digital image processing

8-bit digital image: matrix of intensity values {0, 1, . . . 255}

enormous redundancy in “typical” images (useful for denoising,
compression, etc.)

simplest graphical model: 2-dimensional grid or lattice
(Ising, 1923; Geman & Geman, 1984, and many others)
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Communication and error-control coding

x7x6x4 x2 4567 x3
x1

x5  2367
 1357

error-control coding: introduce redundancy via parity checks

ψ1357(x1, x3, x5, x7) =

{
1 if x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0,

0 otherwise.



Communication and error-control coding

x7x6x4 x2 4567 x3
x1

x5  2367
 1357

error-control coding: introduce redundancy via parity checks

state-of-the-art codes (turbo, LDPC etc.) based on “tree-like” graphs
(Gallager, 1963; Berrou et al., 1993; Urbanke & Richardson, 2008, and many others)



Epidemiological networks

(a) Cholera epidemic (London, 1854)
Snow, 1855

network structure associated with spread of disease
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Epidemiological networks

(a) Cholera epidemic (London, 1854) (b) “Spoke-hub” network
Snow, 1855

network structure associated with spread of disease

useful diagnostic information: contaminated water from Broad Street
pump
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Social networks
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(a) US senators (2004-2006) (b) Biblical characters
(Ravikumar, W. & Lafferty, 2006) www.esv.org
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Biological networks

gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)
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Biological networks

gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)

many other examples:
◮ protein networks
◮ phylogenetic trees
◮ neural networks for brain-machine interfaces (e.g., Carmena et al., 2009)
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Core challenges

1 Exploiting graphical structure
◮ Computing most probable configurations

⋆ Communication: channel decoding (turbo, LDPC)
⋆ Image processing: denoising/deblurring

◮ Inferring “hidden variables”
⋆ Computer vision: stereo vision, face recognition
⋆ Social networks: detecting cliques, party membership etc.
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1 Exploiting graphical structure
◮ Computing most probable configurations

⋆ Communication: channel decoding (turbo, LDPC)
⋆ Image processing: denoising/deblurring

◮ Inferring “hidden variables”
⋆ Computer vision: stereo vision, face recognition
⋆ Social networks: detecting cliques, party membership etc.

2 Discovering graphical structure in data

◮ Appropriate choice of “state variables”

⋆ Neuroscience: firing rates, spike counts, EEG?
⋆ Optical character recognition: pixels, Fourier, wavelets?

◮ Learning graph structure from data
⋆ Graph selection: which edges are present/absent?
⋆ Parameters: what types of interactions?
⋆ Validation: reliability of fitted models?
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Example: Epidemics and graphical models

Disease status of person s: xs =

{
+1 if individual s is infected

−1 if individual s is healthy
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Example: Epidemics and graphical models

Disease status of person s: xs =

{
+1 if individual s is infected

−1 if individual s is healthy

(1) Independent infection

P(x1, . . . , x5) ∝

5∏

s=1

exp(θsxs)

(2) Cycle-based infection

P(x1, . . . , x5) ∝
5∏

s=1

exp(θsxs)
∏

(s,t)∈C

exp(θstxs xt)

(3) Full clique infection

P(x1, . . . , x5) ∝
5∏

s=1

exp(θsxs)
∏

s 6=t

exp(θstxsxt)



Possible epidemic patterns



Underlying graphs



Markov property and neighborhood structure
Markov properties encode neighborhood structure:

(Xs | XV \s)︸ ︷︷ ︸
d
= (Xs | XN(s))︸ ︷︷ ︸

Condition on full graph Condition on Markov blanket

N(s) = {t1, t2, t3, t4, t5}

Xs

Xt1
Xt2

Xt3

Xt4

Xt5

basis of pseudolikelihood method (Besag, 1974)

used for Gaussian model selection (Meinshausen & Buhlmann, 2006)



Graph selection via neighborhood regression

Key: Graph recovery G equivalent to recovering neighborhood sets N(s).

Method: Based on n samples:

1 For each node s, predict Xs based on other variables X\s:

bθ[s] := arg min
θ∈Rp−1
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negative log likelihood ℓ1 regularization

2 Estimate local neighborhood bN(s) by extracting non-zero positions within bθ[s].

3 Combine the neighborhood estimates to form a graph estimate bG.
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Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled
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Some theory: Scaling law for graph selection
graphs Gp,d with p nodes and maximum degree d

minimum absolute weight θmin on edges

how many samples n needed to recover the unknown graph?

Theorem
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n > cu
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d2 + 1/θ2min
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log p
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Lower bound on sample size

=⇒ P[Ĝ 6= G] → 0︸ ︷︷ ︸
Vanishing probability of error



Some theory: Scaling law for graph selection
graphs Gp,d with p nodes and maximum degree d

minimum absolute weight θmin on edges

how many samples n needed to recover the unknown graph?

Theorem

Achievable result: For graph estimate Ĝ produced by NR method:

n > cu
(
d2 + 1/θ2min

)
log p

︸ ︷︷ ︸
Lower bound on sample size

=⇒ P[Ĝ 6= G] → 0︸ ︷︷ ︸
Vanishing probability of error

Necessary condition: For graph estimate G̃ produced by any algorithm.

n < cℓ
(
d2 + 1/θ2min

)
log p

︸ ︷︷ ︸
Upper bound on sample size

=⇒ P[G̃ 6= G] ≥ 1/2︸ ︷︷ ︸
Constant probability of error



Illustration: Social network of US senators
originally studied by Bannerjee, Aspremont and El Ghaoui (2008)

discrete data set of voting records for p = 100 senators:

Xij =

{
+1 if senator i voted yes on bill j

−1 otherwise.

full data matrix X ∈ R
n×p with n = 542:

X =




X11 X12 · · · X1p

X21 X22 · · · X2p

X31 X32 · · · X3p

... · · · · · ·
...

Xn1 Xn2 · · · Xnp






Estimated senator network (subgraph of 55)



Summary

graphical models: one framework for capturing structure in
high-dimensional data sets

◮ classical history....
◮ increasingly relevant in era of massive data sets
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Summary

graphical models: one framework for capturing structure in
high-dimensional data sets

◮ classical history....
◮ increasingly relevant in era of massive data sets

various areas to be further explored:
◮ other priors over graph spaces
◮ dynamic graph models
◮ mixed modality graphs (e.g., switching Markov models)
◮ inferring causality
◮ theory for message-passing on “non-tree-like” graphs

interactions between graphs and other signal structures
◮ graphs and sparse signals: e.g., Cevher, Hegde, Duarte & Baraniuk, 2009
◮ graphs and manifolds: e.g., Belkin et al., 2009
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