

NATIONAL CENTER FOR SUSTAINABLE TRANSPORTATION TECHNOLOGY (NCSTT)

Research Innovation and Entrepreneurship Development To Support Sustaianable Transportation Technology in Indonesia

Sigit P. Santosa

26 September 2017

AGENDA

- 1
- Johari Chart SANTOSA
- NCSTT Introduction

- 2
- Executive Summary
- Indonesia Economic Growth & Potential

- Ž
- Current Condition on Transportation System
- Challenges and Opportunity

- 4
- Mass Transport Solution
- National Railway Master Plan Indonesia

- NCSTT Research and Collaboration
- Summary / Closing Remark

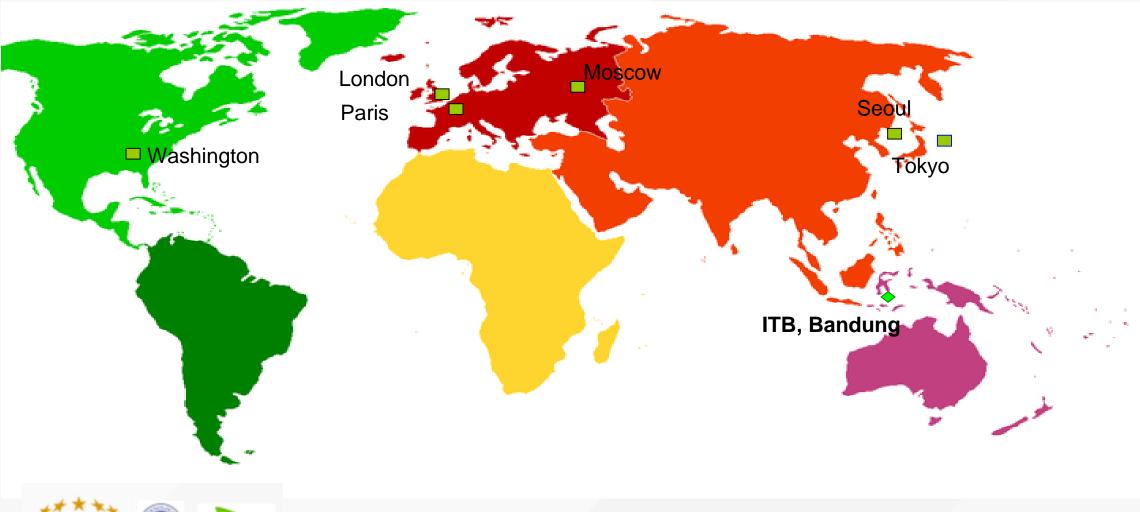
Johari Chart

SIGIT P. SANTOSA

- **□ EDUCATION**:
 - \square Enginieur, Ir ITB (1991),
 - ☐ Master of Science of Mechanical Engineering, MSME MIT (1997),
 - □ Doctor of Science, Sc.D MIT (1999)
- ☐ GM North America Product Development (1999 2013)
- ☐ Faculty Staff, Faculty of Mechanical and Aerospace Engineering, ITB
- ☐ Chairman NCSTT National Center for Sustainable Transportation Technology
- □ **Director** CCR Electric Based Transportation Technology Development

Contact: sigit,santosa@ftmd.itb.ac.id

+62 811 211 9994



INDONESIA

INSTITUT TEKNOLOGI BANDUNG

INSTITUT TEKNOLOGI BANDUNG

INDONESIA

Location: Bandung, capital of West Java

province

STUDENTS

	Under-graduate	14501
STUDENT BODY	Master	5868
	Doctor	936
	Undergraduate	3544
ENROLLMENT	Master	2541
	Doctor	190
GRADUATES	Under-graduate	3343
	Master	2066
	Doctor	87

Facilities

CAMPUS Ganesha	29 Ha
CAMPUS Jatinangor	40 Ha
SPORT FACILITIES	4 Ha
BUILDING FLOOR PER STUDENT	18.5 m ²

ACADEMIC AND NON ACADEMIC STAFF

ACADEMIC STAFF		1221
EDUCATION	Bachelor	18
	Master	273
	Ph.D.	804
ACADEMIC RANK	Professor	
	Assoc. Professor	308
	Assistant Professor	432
	Lecturer	292
FACULTY: STUDENT RATIO		1:17
NO OF ADMINISTRATIVE STAFF		1513
ADM. STAFF : STUDENT RATIO		1:14

Executive Summary

- Indonesian transportation industry is an important pillar for manufacturing sector
- Many transportation industries, i.e. automotive and railway industries have manufacturing plants and expanded production capacity in Indonesia
- □ Rising per capita GDP major automotive production in ASEAN market: Indonesia (34%), Thailand (43.5 %)
- Strong projected demand for railway vehicles in Indonesia as part of the National Railway Masterplan 2030.

GDP Per Capita ASEAN (2016)

Country	GDP Per Capita (\$)	GDP Growth Per Capita (%)
Singapore	52.888,7	0.8
Brunei Darussalam	36.607,9	-1,9
Malaysia	9.766,2	3,5
Thailand	5.816,4	2,5
Indonesia	3.346,5	3,5
The Philippines	2.899,4	4,2
Vietnam	2.111,1	5,5
Lao PDR	1.812,3	5,2
Myanmar	1.203,5	6,1
Cambodia	1.158,7	5,3

Source: World Bank Data

Indonesian Transport System

PROBLEM: Un-sustainable Transportation in Indonesia

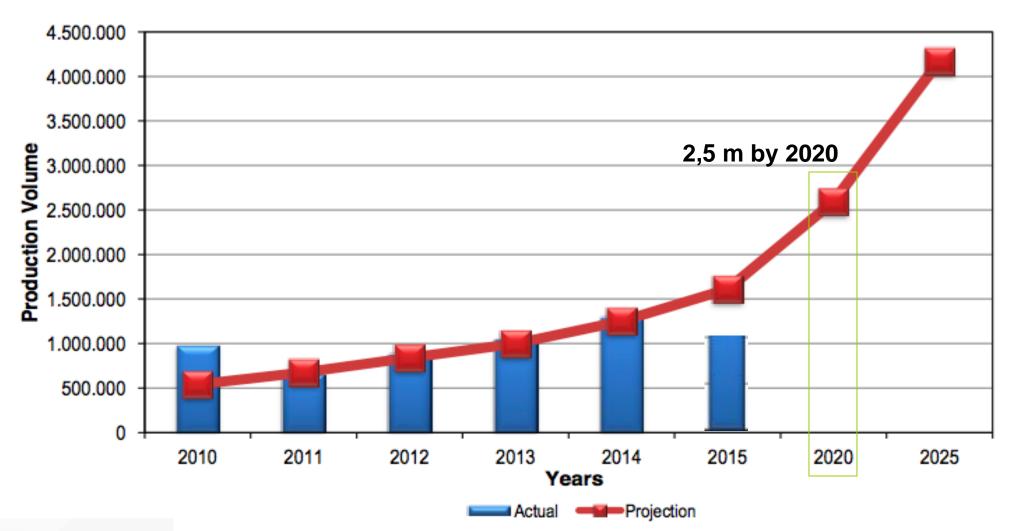
- > High traffic congestion, polution, dependence on fossil fuel
- Transportation system in Indonesia cannot support national economic development. Rp. 65 T economic losses/ year

CHALLENGES: Electric Vehicle Revolution in 2025

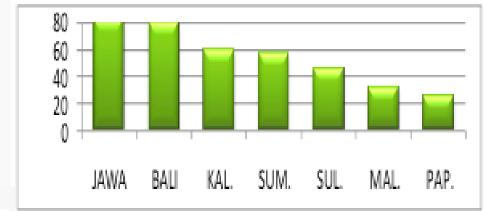
- > Fuel Economy Regulation of 56.5 MPG (Mile Per Gallon) started in 2025
- > The electric based transportation will be the solution wrt cost & regulation
- ➤ Global electric vehicle proliferation strategy In Indonesia will need to be addressed

OPPORTUNITIES: Indonesian Transport Expansion Plan in 2030

- ➤ Indonesian market for passenger vehicles will increase from 1.4 million to 4 million.
- ➤ New urban railways system of 3800 km will require 12,000 new passenger coaches will be needed (RIPNAS).



Car Market Projection in Indonesia 2010-2025


IND/PER/10/2009

奥

Railway Passenger Projection 2015-2025

Passenger Projection - Train					
	2006	2010	2015	2020	2025
Java	127.519.723	155.158.347	184.299.294	214.417.082	244.673.991
Sumatera	2.566.924	4.366.143	6.401.799	8.653.562	11.103.851
Kalimantan	-	-	479.468	781.226	1.120.520
Sulawesi	•	-	2.483.369	3.902.371	5.406.375
TOTAL	130.086.647	159 <mark>.524.490</mark>	193.663.930	227.754.241	262.304.737

SOURCE: RAILWAYS MASTER PLAN 2009

- INDONESIAN POPULATION IN 2025: 273.6 MILLION.
- URBAN POPULATION IN JAVA: 82.2% (120 MILLION).
- GDP PER CAPITA: US\$ 13,000-16,000,
- MOBILITY AND CONNECTIVITY IS CRITICAL.

Indonesian Railway Master Plan (RIPNAS) 2030

- Existing railway track: 4,500 km
- Expansion Plan in 2030 : 12,000 km

Source : RIPNAS 2010-2030

National Center for Sustainable Transportation Technology (NCSTT)

- Established by ITB for the development of integrated and sustainable transportation to support National Transportation Master Plan
- Appointed by the Ministry of Research, Technology, and Higher Education as the **National Center of Excellence**

Target Accomplishments:

- Downstream research in collaboration with transport industries
- Stimulate new innovations and acquisition of transport technologies
- Capacity building of local manufacturers especially SME's that produce parts and components

輿

Electric & Mass Transport Solution

Electric based and mass transportation system is selected due to the fact :

- ☐ Electric Vehicle Renewable & Sustainable Energy Solution
- Mass Transport Significant reduction of the roadway load and high capacity on cargo/passenger. Railway track only occupy 1/8 area of the roadway for passenger cars
- ☐ Technological Challenge for Electric Vehicle:
 - 1. Battery / RESS Technology Maturity
 - 2. Lightweight vehicle technology
 - 3. Using electric motor with high energy efficiency

NCSTT Research Ecosystem

VEHICLE
TECHNOLOGY /
ROLLING STOCK

INFRASTRUCTURE AND SYSTEM

NCSTT

EDUCATION / TRAINING

POLICY, PLANING, BUSINESS (TOD)

輿

Product of Research - NCSTT

Vehicle Technology

Mass Transport: LRT, MRT

Electric Vehicles

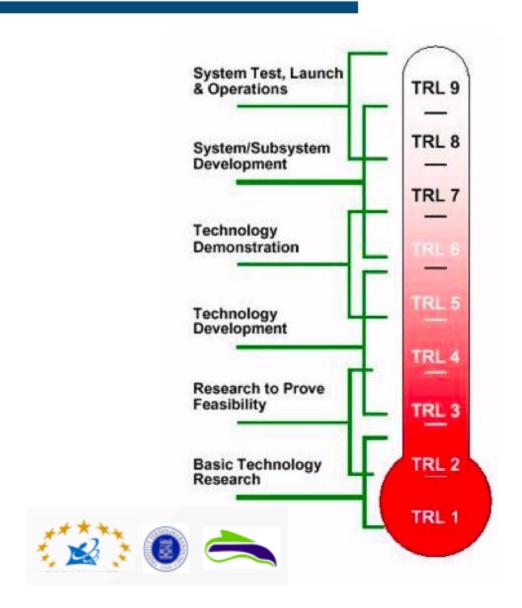
Infrastructure

Railway, Road, Signal, Control

Electrification infrastructure and charging

Policy and Planning

Integrated Transport policy


Regulation, management, business plan

Resources

Expert, researcher, operator

Training and education curriculum

Innovation & Entrepreneurship Readiness

DEVELOPMENT MODEL FOR INNOVATION AND ENTREPRENEURSHIP

- Educating innovation process
- Coaching to commercialize the invention
- Achieving proof of concept in the applied research
- Pursuing Intellectual Property (IP) right
 - LPiK
 - Innovators

- LPiK /Tenants
- Venture Investors
- Start up specialists
- Entrepreneurs
- Open ITB inovation to public
- Linking to potential venture investors
- Coachig with start up specialist & entrepreneurs
- Forming incubators

- Joint venture and start up establishment
- Product dissemination and marketing
- Nurturing ecosystem of inovation & entreprenurship

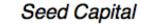
- Inventors
- Entrepreneurs
- Start up company
- ITB

Innovation Development Scheme

UNIVERSITY-BASED ACCELERATOR

In Collaboration with:

and others


- Access to Market
- Intellectual Property
- Supporting Facilities
- Joint Research
- Consulting Services
- Advisory Board in Spin-off Company

FOUNDERS' & MANAGEMENT

Expertise

- Scientific
- Commercial

SPIN OFF COMPANY / JOINT VENTURE

 Other Strategic Support INVESTMENT COUNCIL & PARTNERS

VENTURE CAPITAL

典

Transportation Technology Acquisition Phases

Policy / Regulation

- Trans. of Tech.
- Offset
- Insentif

Supplier Industry

- Component research.
- Local content
- Integ. Supplier

Transport Industry - EDC

- OEM Assembler
- OEM Integrator
- Eng. Development

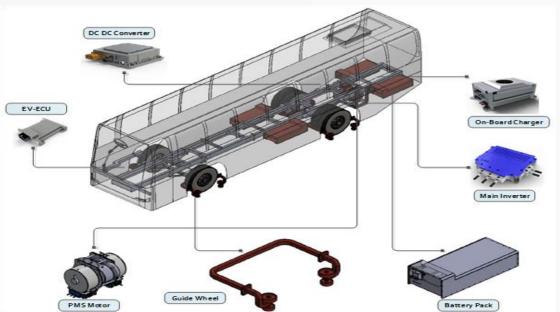
NCSTT Collaborative Research (Selected Project)

No	Research Title	Partners	Period	Status	Funding Source
		MIT, Undip, UNS,			
1	CCR Electric Based Transportation	Unsri, ITK, Unlam,			
	Technology	Unsrat	2017 - 2021	Approved	USAID-SHERA
	Material modeling and development of				RAEng /
2	ultralight metal structures applicable				Newton Fund
	for railway vehicles	Oxford Univ, INKA	2017 - 2019	Approved	UK, Ristekdikti
	Research and application of mobile	Bejing Jiaotong			China Ministry
3	communication network technology for	Univ. of			of Research &
	high speed railway in Indonesia	Technology	2017 - 2018	Approved	Technology
4	Feasibility Study for Jakarta-Surabaya	ITB, Undip, ITS,			Ministry of
4	Medium Speed Train	BPPT	2017	Approved	Transportation
5	Development of Raillink Vehicle to				
	meet NVH Requirements.	INKA	2017	Approved	Ristekdikti
6	Feasibility study for Urban Rail				
	Development - Technology Selection				
	and Infrastructure Development	PT KAI	2017	Approved	PT KAI
7	Development of railway seat for low				
7	cost railway liner in Indonesia.	INKA	2017	Approved	Ristekdikti

典

Metro Capsul – TRL 7

- Feeder 3: urban mass transport 50 passengers
- Build and validated at Subang Test Track
- Pilot project:Bandung 6 km Loop
- Expansion project to Kereta Kapsul (LRT) for 120 passengers for CGK-Pluit LRT route



輿

Railway control/automation Research with PT LEN

Automated Guided Transit (AGT)

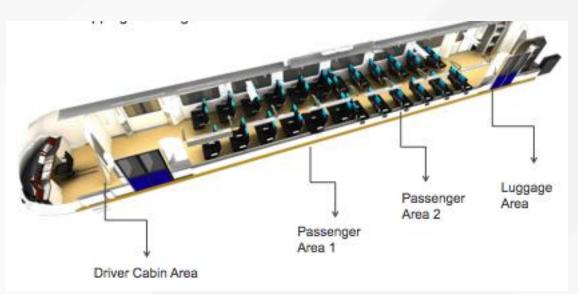
- ITB PT LEN for Airport People Mover
- For Jakarta Airport (CGK)

典

Railway Product Innovation with PT INKA

Railink Vehicle for Jakarta Airport - Tangerang

LRT Palembang
Aluminum construction



Interior design & prototyping

NCSTT Technology Development

In order to create focus research innovation, acticities for product innovation priorities in the CCR are:

- Battery integrity/safety system with MIT
- > Electric bus for student/faculty shuttle transportation
- e-Trike: Electric vehicle for postal delivery
- > Light Rail Transit/LRT (Kereta Kapsul) for urban transport in Jakarta and Bandung
- > infrastructure development, static/dynamic induction charging system

典

MIT Collaborative Research on Li-Ion Battery

NATIONAL CENTER FOR SUSTAINABLE TRANSPORTATION TECHNOLOGY (NCSTT)

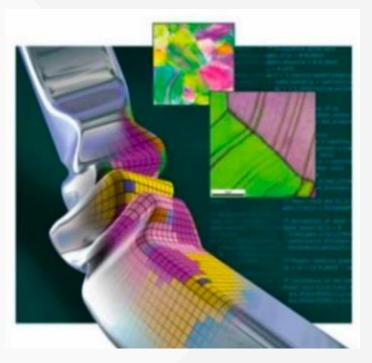
Material Modeling and Development of Ultralight Metal Structures Applicable for Railway Vehicles

ITB – University of Oxford Collaboration Funded by Royal Academy of Engineering/Newton Fund - UK

Program Objectives

- ☐ To develop a material constitutive model for ultralight metal sructures to predict:
 - Dynamic/strain rate behavior of crashworty structures
 - Manufacturability process, and its influence to dynamic performance.
 - Damage behavior
- ☐ To strengthen research network between universities (ITB and Oxford) and industry (INKA).
- ☐ To improve expertise on <u>product development</u> and research capacity of each involving research institution & Industry

Research on High Strength Steel Materials


Multiscale testing and characterization for high strength steel Materials

Multiscale material modeling for damage mechanisms

Newly designed structure of railway vehicles expected to substantially improve and contribute to the reduction of energy consumption

Summary/Conclusion

- Focus on research innovation ecosystem with empahsys on product development and industrial implementation
- □ Strengthening supplier/component industries as the first step development before embarking into OEM industries
- Establishment of national research center, such as NCSTT research collaboration to support engineering development activity
- Embracing global partnership with international research institution and industries

THANK YOU

INFO: www.ncstt.itb.ac.id

NCSTT – CRCS Building, 2nd Floor

Institut Teknology Bandung

Jl. Ganesha 10, Bandung 40132

INDONESIA

Phone: +62 22 251 2971

